		10				00	00		010	0010							0100		00100	310				0100		11011	100						.010	010 (
				00011	10	01 0		10	010		0100										00100	101		0 10	01100	10101	010		1001			0 0	101	01010
		10	0100111	10010	31 0				010	0 10		1 10			01 0		110	001					010			010110	018	100				0 0		01 10
			100 010						110	1101	0 10						00 0							0 1					0 010					
			1011010				aa		100					Q1 11												11010			0101	aa				
2			010		aa		10		101					01001		1 1					00100		0 0				10		0101 01 0	10	010	0 1	0 1	1010
			1010104	01001	110										101		0100				10100		010			10000	010		O1 0		0 0	1 1	0 1	TOTO
			1010101	01001	110							0 1		10110	0010											10000			01					10
	10	11			00			00		0101	0 0	1		01010														11	01					
				00101																					01	01001								
			1001001					01		1 010			6	10101							01001							010						
		01 (0101010	1010		3																												
			0100101										01				10					01	010											
																													01					
			1011110	0010													0														101			
	20																																	
	â							10																										
								10																								0 0		
		01																																
		01													0 0																			
																																		01
					0																													

Smart Cities Communications

Presented by:

Yoram Orzach

"Be nice to nerds. You may end up working for them. We all could." Charles J. Sykes

- Smart City Structure and applications requirements
- Smart City network structure
- Communications technologies for the smart city networks
- Survivability and security

Smart City Structure and Applications Application Types

Smart City Structure and Applications Application Requirements

	Public safety	Video Surveillance & analytics	Water & energy	Smart metering	Waste Management	Smart Offices	Smart Homes	(Smart) People	Parking Control	Traffic Control
High Bandwidth (Symm/Asymm)	V	V				V	V	V	V	V
Low Delay/Jitter	V					V	V			V
High density			V	V		V				V
High Reliability	V	V								V

"Experience is a hard teacher because she gives the test first, the lesson afterwards"

Vernon Sanders Law

- Smart City Structure and applications requirements
- Smart City network structure
- Communications technologies for the smart city networks
- Survivability and security

Smart City Network Structure The Network Structure – Overall Architecture

Smart City Network Structure The Network Structure – Technologies – the Core Network

Smart City Network Structure The Network Structure – Technologies – the Access Core Network

Smart City Network Structure The Network Structure – Technologies – the Access Network

"Success consists of going from failure to failure without loss of enthusiasm." Winston S. Churchill

- Smart City Structure and applications requirements
- Smart City network structure
- Communications technologies for the smart city networks
- Survivability and security

Smart City Network Structure The Network Structure – Technologies – Core and Metro Core

Smart City Network Structure The Network Structure – Technologies – the Access Networks – Radio Technologies

Technology	Protocol	Frequency	Throughput	Range
4G/LTE	3GPP R8 to R14	850/900/1800/1900/ 2100MHz	10's of Mbps and higher	10's of meters up to 10's of Km's
5G/6G	3GPP R15 to R18 (5G) R19 (Early 6G)	Sub-1G up to 60GHz+	100's of Mbps to 100's of Gbps	10's of meters up to 10's of Km's
WiFi-4/5/6/7	Wifi / 802.11	2.4G/5G/6GHz	10Gbps+ per AP	PtP – Km's PtMP – 100's meters
LoRa/LoRaWAN	ITU-T Y.4480 / LoRa Alliance	433, 868, 900 MHz	0.3 kbps to 50 kbps	20Km's
Bluethooth Low Energy (BLE)	Bluethooth	2.4GHz	1Mbps	10's meters
ZibBee	802.15.4	2.4GHz	Mbps's	10's ot 100's meters
PtP / PtMP Microwaves	Proprietaries	5-6GHz to 60GHz+	Gbps to 10's of Gbps's	10's of Km's, 100's meters (mm Waves)

Wireless and Cellular history

How it started and where we are today

5G Objectives 5G objectives by ITU-R

Source: ITU-R, M.2083-0 (09/2015)

USER EXPERIANCE From 10Mbps to 100/50Mbps (Downlink/Uplink)

From 0.1Mbits/Sec/m² to 10Mbits/Sec/m²

<u>PEAK</u> DATA RATE From 1Gbps to 20Gbps/10Gbps (Downlink/Uplink)

Ë

Ļ

ENERGY EFFICIENCY X100 improvement from 4G

AREA TRAFFIC CAPACITY

CONNECTION DENSITY From 10³ to 10⁶ Devices/Km²

LATENCY

User/data plane - from 10mS in 4G to 1mS in 5G (3GPP target is 0.5mS) Control plane - 20mS (3GPP target 10mS)

MOBILITY

From 350Km/hour to 500Km/hour connectivity in motion

SPECTRAL EFFICIENY

3 times more then 4G - 30/15 bits/sec/Hz (Downlink/Uplink)

5G Applications Requirements Requirements to be supported by the 5G network

eMBB (enhanced Mobile Broadband)

- Fixed Wireless Access (FWA)
- High Speed Home / SOHO Broadband

mMTC (massive Machine Type Communications)

- Massive connectivity
- IoT and Sensor networks

URLLC (Ultra-reliable and Low-latency communications)

- Public safety
- **Medical devices**
- Industrial automation

High bandwidth Average and peak

High density Low energy High reliability

Low delay Ultra-high reliability

Source: ITU recommendation <u>ITU-R M.2083-0</u>

The Overall Picture 5G networks - the overall architecture

Enabling Technologies – Network Slicing Different networks for different purposes, user mapping to each

- NSSF Network Slice Selection Function
- AUSF Authentication Server Function
- UPF User Plane Function
- SMF Session Management Function
- PCF Policy Control Function

"Three things cannot be long hidden: the sun, the moon, and the truth."

Buddha

- Smart City Structure and applications requirements
- Smart City network structure
- Communications technologies for the smart city networks
- Survivability and security

Summary

Various applications with various performance and availability requirements

MPLS and Carrier-Ethernet at the core network, Cellular, Wi-Fi ant IoT technologies at the access network

Security achieved by standard protection mechanisms and behavior analysis

Thanks Yoram Orzach <u>yoram@ndi.co.il</u> 052-4899699 <u>http://www.yoramorzach.co.il/</u>

